The Pentaguark

On July 01, 2003 nuclear physics captured the science news by announcing the existence of a new class of subatomic particle the pentaquark. At LEPS and JLAB an exotic baryon (S=+1) was observed.

What about the pentaguark?

- The origin of the pentaquark investigation and why this is another kind of particle
- · Experimental evidence
 - LEPS
 - ITEP
 - CLAS
 - SAPHIR
- Theorists response to the pentaguark 'discovery'
- What next in experimental investigation?

Lets start with the very beginning...

FERMIONS			matter constituents spin = 1/2, 3/2, 5/2,				Sa	mple l	Fermi	onic Ha	adrons	
Leptons spin = 1/2			Quarks spin = 1/2				Baryons qqq and Antibaryons qqq					
Flavor	Mass GeV/c ²	Electric charge	Flavor	Approx. Mass GeV/c ²	Electric charge		Symbol	Name	Quark content	Electric charge	Mass GeV/c ²	Spin
Ve electron neutrino	<7 x 10 ⁻⁹	0	U up	0.005	2/3		p	proton	uud	1	0.938	1/2
e electron	0.000511	-1	d down	0.01	-1/3		p	anti- proton	ūūā	-1	0.938	1/2
$ u_{\mu}^{\mathrm{muon}} $	< 0.0003	0	C charm	1.5	2/3		n	neutron	udd	0	0.940	1/2
μ muon	0.106	-1	S strange	0.2	-1/3	\	Λ	lambda	uds	0	1.116	1/2
VT tau	< 0.03	0	t top (initial ev	170 ridence)	2/3		Ω	omega	SSS	-1	1.672	3/2
au tau	1.7771	-1	b bottom	4.7	-1/3		Name and Address of the Owner, where the Owner, which is the Owner, where the Owner, which is the Owner,	Sample	-		100000000000000000000000000000000000000	-,-
	BOSC	NS	force car spin = 0,			I \			Mesor			
Unified Electroweak	Moss	Electric	Strong	Mass	Electric		Symbol	Name	Quark content	Electric charge	Mass GeV/c ²	Spin
spin = 1	GeV/c²	charge	or color spin = 1	GeV/c²	charge	\	π^+	pion	uā	+1	0.140	0
γ photon	0	0	g	0	0	,	K-	kaon	sū	-1	0.494	0
W ⁻	80.22	-1	Pigoti				ρ^+	rho	ud	+1	0.770	1
\mathbf{W}^{+}	80.22	+1					D ⁺	D+	cd	+1	1.869	0
\mathbf{Z}^{0}	91.187	0					$\eta_{ m c}$	eta-c	cc	0	2.979	0

Why is the Θ^+ important?

- QCD does not prohibit q^4q -bar states, but early searches have failed to produce evidence for pentaquarks. With a definite theoretical prediction of mass and width of a S=+1 state (structure undds-bar) the search was on.
- The Θ^+ is the first hard evidence of a <u>new class of particle</u>: the pentaquark.
- One of the central activities at Jefferson Lab is to understand N* resonances. Do pentaquarks contribute to the resonance spectrum?

What we were used with... The standard baryon decuplet representation

Here, hypercharge Y versus isospin I_3 is plotted, where Y = B + Sand $I_3 = Q - Y/2$ for baryon number B and strangeness S.

The Anti-decuplet predicted by Diakonov et al.

What could this be?

- Searches based on prediction D. Diakonov, V. Petrov, M.Polyakov,
 Z. Phys. A 359, 305 (1997)
- S=+1 I=0 chiral soliton, 1540 MeV
 - member of exotic flavor anti-10
 - $J^p=1/2^+$ (requires orbital L=1)
- Mass fixed by N1/2+(1710)
 - But mass, strong decays, EM couplings, easily understood in CQM
- - PDG "estimate" 100 MeV (50-250 MeV)
- Similarly, width of ** P11 state $\Sigma(1880)$ predicted 70 MeV, PDG 80-260 MeV
- Predicted widths are too small?
 - All proportional to a calculated constant
 - Why should it be so narrow if can "fall apart"?

LEPS at Spring-8

- SPring-8: electron storage ring for synchrotron radiation, 8 GeV
- LEPS = Laser Electron Photon beam @ SPring-8
- Compton back scatter 351 nm Ar (UV) laser photons off electrons

- produces 1.5-2.4 GeV photon beam
- tag by measuring bending angle of scattered electron by dipole magnet in the storage ring

Θ +(Z+) analysis at LEPS at Spring-8.

LEPS Collaboration (T. Nakano *et al.*), PRL **91**: 012002, 2003; hep-ex/0301020

- Look in $\gamma^{12}C \Rightarrow N K^- \Theta^+ \Rightarrow N K^- K^+ n$
- elementary process: γn ⇒ Θ⁺K⁻ ⇒ nK⁺K⁻
- Detect K⁻, look at missing mass MM_{yK-}
 - Cut Ey<2.35 GeV \Rightarrow 3,200 events
 - Calculate $MM_{\gamma K+K-}$ for $n(\gamma, K^+K^-)X$, cut on nucleon mass (assume initial neutron at rest) \Rightarrow 1,800 events
 - Detect K^+ , cut events from $\phi \Rightarrow K^+K^- \Rightarrow \sim 270$ events
 - Detect recoil proton from γp⇒K+K-p & reject the events
 ⇒ 109 events

Detected nuclear reactions

$$\gamma n(p) \to \Theta^{\dagger} K^{-}(p)$$

$$\Theta^{\dagger} \to K^{+} n$$

$$\gamma p(n) \rightarrow \Lambda^* (1520) K^+ (n)$$
$$\Lambda^* (1520) \rightarrow K^- p$$

$$\gamma N \rightarrow \phi(1020) N \rightarrow K^+K^-N$$

Observation $\Lambda(1520)$ from LEPS at Spring-8.

$$MM_{\gamma K^{\pm}}^{c} = MM_{\gamma K^{\pm}} - MM_{\gamma K^{+}K^{-}} + M_{N}$$

- Make Fermi motion correction
- If production process is sequential, e.g.
- ¬γp ⇒ Λ(1520)K⁺ ⇒ K⁺(p)K⁻,
 same nucleon is struck in both,
 so smearing from Fermi
 motion is correlated
- Dashed: events where recoil proton detected, shows clear Λ(1520) peak
- Solid: signal sample of 109 events

Observation Θ + from LEPS at Spring-8.

- Apply same Fermi motion correction to MM_{vK-}
- Solid: signal sample
- Dashed: background from protons in upstream H₂ target, normalized to signal above 1590 MeV
- 19 +/- 2.8 events above background of 17, 4.6σ
- Mass 1540 +/- 10 MeV
- Width < 25 MeV @ 90% CL

Observation from DIANA@ITEP...

- DIANA Collaboration hep-ex/0304040
- Xe bubble chamber, 850 MeV K⁺ beam from proton synchrotron at ITEP
- $K^+ Xe \Rightarrow \Theta^+ N \Rightarrow (K^0p) N$
 - 73 counts including 44 background, 4.4σ
 - 1539 +/- 2 MeV, width < 9 MeV (detector resolution)
- Not exclusive final state...

All measured events DIANA@ITEP...

Seminar@JLAB, August 15, 2003

Luminita Todor, Carnegie Mellon University

...with cuts to suppress p and K⁰ reinteractions in Xe nucleus DIANA@ITEP...

CEBAF Large Acceptance Spectrometer

Seminar@JLAB, August 15, 2003

Luminita Todor, Carnegie Mellon University

Event detection in CLAS@JLab

Beam Photon: 1.58 GeV

The CLAS Photon Tagger

The CLAS data sets investigated

- Photoproduction data on deuterium (g2a run, 1999)
 - Tagged photons with energies up to 2.9 GeV
 - Single charged particle trigger
 - Inclusive reaction $\gamma d \Rightarrow \Theta^+ K^-(p) \Rightarrow nK^+ K^-(p)$
 - Exclusive reaction γd ⇒ K+K-pn
- Photoproduction data on hydrogen (g6a,g6b runs, 1999)
 - Tagged photons with energies up to 4.95 GeV
 - Two charged particles trigger
 - Reaction of interest $\gamma p \Rightarrow \pi^+ K^+ K^- n$

Neutrons identified by missing mass reconstruction!

The Θ^{+} search group at CLAS

Particle ID, ntuples Luminita Todor

Eugene Pasyuk

Monte Carlo

Dave Tedeschi

Data Analysis

Stepan Stepanyan

Valeri Koubarovski

Ken Hicks

Dan Carman

Reinhard Schumacher

Elton Smith

Bernhard Mecking Volker Burkert

PID improvements CLAS@JLab

Photoproduction on deuterium I

- In the analysis we assume $\gamma n \Rightarrow \Theta^+ K^- \Rightarrow nK^+ K^-$ with Fermi correction a la Spring-8 applied
- · No statistical significant result obtained!
- Production of Θ^+ off a single nucleon proceeds via t-channel kaon exchange like $\Lambda(1520)$
- The t-channel meson, K^- in the case of Θ^+ , is emitted mostly in forward direction.
- The limited forward acceptance of CLAS together with the in-bending of negative charged particles due to the magnetic field, are unfavorable circumstance for direct ⊕+ photoproduction detection.

Inclusive reaction in g2 result

This is still a preliminary result.

This analysis is going to be revisited using the experience gained in exclusive channel reaction.

Exclusive reaction in g2

CLAS Collaboration (S. Stepanyan, K. Hicks, et al.), hep-ex/0307018

- Requires FSI both nucleons involved
 - No Fermi motion correction necessary
 - FSI puts K⁻ at larger lab angles: better CLAS acceptance
 - FSI not rare: in ~50% of $\Lambda(1520)$ events both nucleons detected with p>0.2 GeV/c

Θ[†]: Channel Identification

- Detected K⁺ K⁻ p
 - Reconstruct neutron via missing mass
 - 1.5 GeV < Ε_γ
- No K[†]K[¯]pn events that failed PID selection (dashed histogram)
- ~15% non-K[†]K[¬]pn
 events within 3_o range
 (background under the peak)

Reconstructed Neutrons

Θ[†]: Background Rejection

- Remove events with $IM(K^+K^-) \rightarrow \phi(1020)$ by IM > 1.07 GeV
- Remove events with $IM(pK^-) \rightarrow \Lambda(1520)$
- Limit K⁺ momentum due to γ d \rightarrow p K⁻ Θ + phase space p_K + < 1.0GeV/c
- C. Meyer (CLAS note 03-009): checked narrow structure impossible in $\gamma d \Rightarrow K^+Y^*N \Rightarrow K^+(K^-N)N, + KN$ rescattering

Θ⁺ the g2 Exclusive Result

 $M(nK^{+}) = MM(\gamma d \rightarrow pK^{-}X)$

- ~42 events in the narrow peak at 1542+/-5 MeV with FWHM of 21 MeV/c
- Estimated significance $5.3+/-0.5 \sigma$
 - Spectrum of the events associated with $\Lambda(1520)$

Θ^{\dagger} on hydrogen g6 data in CLAS

⊕⁺: Channel Identification

 Missing mass selects neutrons:

$$\gamma p \rightarrow \pi^+ K^+ K^- X$$

• Invariant mass of $\{\pi^+K^-\}$ selects K^{*0}

Θ^{\dagger} : Select cos $\theta(p+K-)>0.5$

- $M(nK^{+}) = MM(\gamma p \rightarrow \pi^{+} K^{-}X)$
- The angle cut aims to enhance signal-to-noise and is equivalent with selecting small t

Θ*: Exclusive Result II

- Result of "g6a&b" analysis of channel γp⇒π⁺KK⁺(n)
- Invariant mass of $\{K^{\dagger}n\}$ after selecting $\cos \Theta^*(\pi^{\dagger} K^{-}) > 0.5$
- Background shape taken from spectrum without angle (small-t) cut
- Estimate 4.8σ significance

Θ+ photoproduction with the SAPHIR detector at ELSA

- The reaction $\gamma p \Rightarrow \Theta^+ K_s^0$, where $K_s^0 \Rightarrow \pi^+ \pi^-$ and $\Theta^+ \Rightarrow r$
- Bremsstrahlung tagged phohave energy up to 2.6 GeV

- 1.33x10⁸ two charged particles events taken in 1997-1998 were analyzed
- · The neutron is identified in a kinematical fit
- The photoproduction cross-section $\Theta^+K_s^0 \sim 300 \text{nB}$?!

The SAPHIR result

1540 +/- 4 MeV, width < 25 MeV @ 90% CL

Theoretical questions

- The Θ^+ signal was observed on deuteron, nuclear targets, proton experimentally.
- The existing information beyond a cross-section estimate, doesn't (unequivocally) answer to definite questions relative to the new discovered subatomic particle:
 - Parity and spin
 - Isospin
 - Width (Lifetime)
 - Excited states
 - Form factors

Theoretical interpretations of the pentaquark

- Since Θ^{++} was not observed the experimentalists tend to consider Θ^{+} to be an isoscaler.
- Is it Θ^+ an isotensor? (S.Capstick,P.Page,W.Roberts, hepph/0307019) (I=2, prediction of strongly decaying Θ^{++} and weakly decaying Θ^{+++} and Θ^{-})
- Decay Probability Ratio of (X.Chen, Y.Mao, B-Q Ma, hep-ph/0307381)

$$\frac{\Gamma(\Theta^{+} \to nK^{+})}{\Gamma(\Theta^{+} \to pK^{0})} = \frac{\left(\alpha - \beta\right)^{2}}{\left(\alpha + \beta\right)^{2}} \left(\frac{k_{1}}{k_{2}}\right)^{2L+1}$$

Why is Θ + so narrow?

- 'Group theory and the Pentaquark', B. Wybourne, hep-ph/0307170
- 'Stable uudds-bar pentaquarks in the constituent quark model', Fl.Stancu & D.Riska, hep-ph/0307010
- 'Pentaquark states in chiral potential', A.Hosaka, hep-ph/0307232
- 'Relativistic quark model and the pentaquark spectroscopy', S. Gerasyuta & V.I. Kochin
- Pentaquark at RHIC?
- S.Nussunov (hep-ph/0307357) based on K⁺d scattering data $\Gamma(\Theta^+)$ <6MeV
- Arndt, Strakovski & Workman (nucl-th/0308012) based on existing K+N elastic scattering data estimate that $\Gamma(\Theta+)$ can be as small as 1 MeV
- R.L. Jaffe & F. Wilczek (hep-ph/0307341) starting from their diquark interpretation of $\Theta+$, predict an isospin 3/2 Ξ multiplet around 1750MeV

What is next in experimental investigation

- New data set g2b to be analyzed doubling the g2a statistics
- New experiment E03-113 approved in June 2003, to run in February 2004 will provide 20x more statistics. We aim to obtain angular distribution of the production and decay of Θ^+ as well as the energy dependence.
- A long paper (g2) is in the works.
- · Continuing analysis effort with existing data

Dontoguark Co	arch @ (LAC				
Pentaquark Se	arcn @ C	LAS				
Contact	Data Set	Reaction	Final State	Signal	Status	
			()=undetected			
Battaglieri/DeVita/Osipenko	g1c,g6a,g6b	γp -> θ+ K0s	K+ (n) π+ π-			
Battaglieri/DeVita/Osipenko	g1c,g6a,g6b	γp -> θ+ K0s	$\pi + \pi - p(K0)$			
Battaglieri/DeVita/Osipenko	g6c	γ p -> θ+ K0s	K+ (n) π+ π-	no		
J. Cummings	g1c	γ p -> θ+ K0s	K+ (n) π+ π-			
P. Eugenio	g6c	γp -> θ+ K0s	K+ (n) π+ π-			
Battaglieri/DeVita/Osipenko	g6a,g6b	γp -> θ+ K0*	K+ (n) π+ K-	no		
Battaglieri/DeVita/Osipenko	g1c	γp -> θ+ K0*	K+ (n) π+ K-			
L. Guo	g6c	γp -> θ+ K0*	K+ (n) π+ K-	yes	100	
V. Koubarovsky	g6a,g6b	γp -> θ+ K0*	K+ (n) π+ K-	yes	working group review	
D. Carman	g2a	γd-> θ+ K-p	К0 р К- р			
K. Hicks	g2a	γ d -> θ+ K- p	K+ (n) K- (p)			
R. Schumacher	g2a	γ d -> θ+ K- p	K0 p K- p			
R. Schumacher	g2a	γ d -> θ+ K*- p				
R. Schumacher	g2a	$\gamma d \rightarrow \theta + X$	K0 p X			
S. Stepanyan	g2a	γd -> θ+ K-p	K+ (n) K- p	yes	submitted to PRL	
D. Lawrence	g2a	γ d -> K+ K+ p (Ξ)	K+ K+ p π- π- π0			
D. Lam enec	920	$\gamma d \rightarrow \theta - \Sigma + \pi +$		-		

Exciting development if holds up!

© 2003 United Feature Syndicate, Inc.